Articoli

Mi rivolgo sempre ai neofiti…

Dopo aver trattato un attimo l’argomento del campionamento a questo LINK, trovo opportuno iniziare a giocare con un pò di numeri e un pò di valutazioni. Riprendiamo la formula magica

C = (Dp /F) x 206265

dove C = campionamento (in secondi d’arco su pixel) , Dp = dimensioni dei pixel del sensore utilizzato e F = focale del telescopio.

Bene, ora espandiamo un attimo sto discorso, tralasciando per ciò che viene definitivo come risoluzione del sensore di norma legato al numero dei pixel, ed addentrandoci in un altro tipo di risoluzione che è quella data dal risultato della formula.

Ebbene si, il campionamento che ricaviamo si può definire anche “risoluzione del sistema di ripresa” ovviamente espressa in Arcsec/Px (risoluzione sistema ripresa = campionamento.…sono la stessa cosa) Per gli amanti della precisione, nella risoluzione del sistema di ripresa bisognerebbe anche indicare l’apertura, il diametro….anch’essa è un elemento fondamentale delle valutazioni sulle risoluzioni dei sistemi, ma in un ambito leggermente diverso e che non tratto in questa sede, magar in un articolo apposito.

Torniamo quindi uno step indietro e chiedo appunto di tralasciare/dimenticare/scordarsi per un attimo la risoluzione legata al numero dei pixel a cui normalmente siamo abituati… Andiamo invece a bomba sulla risoluzione del sistema di ripresa e facciamo un paio di esempi pratici.

Supponiamo Di avere a disposizione un setup cosi configurato

Telescopio Newton 250 f/4.9 Lunghezza Focale: 1220 mm – Pixel Size: 9 micron

applicando la formula, avremo un campionamento pari a: 1,5 arcsec/pix. E sin qua ci siamo.

Supponiamo di avere a disposizone un altro setup cosi configurato

Telescopio Rifrattore 80mm f/7,6 Lunghezza Focale: 610 mm – Pixel Size: 4,5 micron

applicando la formula, avremo un campionamento pari a….uguale. 1,5 Arcsec/Px.

Sembra una banalità, ma non lo è. Ho voluto rappresentare questo esempio specifico, proprio perchè sebbene si trattino due ottiche completamente diverse, con pesi diversi e caratteristiche completamente diverse, ebbene… messi a lavorare in queste condizioni, ognuno con il suo sensore, posseggono la stessa risoluzione. Non importa che uno sia il doppio di focale o meno, ai fini della risoluzione di campionamento…”tot” cielo cade su un pixel in una configurazione, altrettanto ne cade sull’altra. Quindi, per inciso, in questo caso specifico gli 1,5 arcosecondi che cadono sul pixel nella prima configurazione con una focale da 1220 mm, sono gli stessi che cdono nel pixel dell’altra configurazione con focale da 610mm, chiaramente poste come condizioni le relative dimensioni dei pixel.

Tutto chiaro fin qua? Sunto: io posso avere anche il telescopio piu grande del mondo, ma se ci metto il sensore col pixel piu grande del mondo potrei avere un campionamento che è identico al telescopio piu piccolo del mondo su cui ci metto il sensore col pixel piu piccolo del mondo.

Ovviamente poste le condizioni di questa esemplificazione, se pongo i due sistemi cosi diversi ma col campionamento dannatamente uguale su una montatura e spengo i motori per 10 secondi, una stella inquadrata striscerà di tot pixel in entrambi i sistemi, in maniera identica. Tot pixel sul telescopio A, stesso numero sul telescopio B. Punto. Fine. Inappellabile.

e da qua arriviamo finalmente all’Autoguida!

Ovviamente il paragone a campionamento tra due telescopi diventa essenziale quando si vanno a fare i calcoli dall’autoguida…partendo da un presupposto: a me non frega NULLA di sapere se il telescopio X può stare in coppia con il telescopio Y basandomi SOLO sulla focale, a me interessa esclusivamente il rapporto tra i due sistemi di ripresa, quindi devo mettere in rapporto la FOCALE col PIXEL SIZE come da formula!

Ecco perchè ho iniziato questo articolo ponendo lo stesso risultato su due sistemi diversi, perchè quando mettiamo un sensore su un telescopio si arriva dritti dritti a dover calcolare il campionamento di due sistemi diversi, dove ciò che conta è il rapporto tra i due sistemi di ripresa. Ripeto perchè i termini sono importanti…..tra i due sistemi di ripresa, non solo tra le focali dei due telescopi. ok? Sistema di ripresa = formula del campionamento, che comprende focale e pixel size.

Vediamo quindia alcuni aspetti legati all’autoguida.

Per farlo partiamo dagli astrofili piu esperti e di lunga data, abituati a loro tempo a riprendere con intervallometro manuale inmano (a pulsante ndr), pellicola, e sistema di guida manuale con crocicchio illuminato..se vogliamo capire dove siamo oggi, dobbiamo partire da li.

A quei tempi si usava di norma un telescopio di guida che avesse ALMENO la stessa lunghezza focale del sistema di ripresa. Ma ancora meglio, si andava giu di barlow sul telescopio di guida proprio per diminuire la possibilità di errore nel sistema di ripresa. Con questo sistema, similare al pantografo praticamente, se la lunghezza focale del tele di guida era il DOPPIO di quella del tele di ripresa, ci si poteva garantire in buona approssimazione una stella tonda dal momento che seguendo la stella col crocicchio si poteva intervenire tempestivamente per correggere la posizione senza avere del mosso nell’immagine finale.

Come già detto, oggi siamo nell’era digitale, sostituiamo l’occhio col sensore, discretizziamo in questo modo il cielo e campioniamo con i due sistemi, quello di guida e quello di ripresa. I due risulati vanno messi in rapporto tra di loro. E qua ne nascono di belle, perchè la vastità di opzioni configurabili è enorme e spesso creano tanto disturbo nella scelta perchè nessuna scheda tecnica può fornire realmente un range applicativo su cui utilizzarli.

Faccio un esempio: supponiamo un sistema di ripresa con un NEWTON 250MM F/4.9 con sopra un pixel da 5,4 micron. Totale campionamento = 0,91

Alla luce di quanto detto con cosa lo accoppiereste? Allora, la prima valutazione da fare è provare a mettersi nella condizione ddi avere il campionamento migliore in rapporto, sfruttando un telescopio di guida tra quelli in commercio, prendiamo ad esempio lo SW 70mm f/7.5 e quindi una focale di 525mm. Sopra che ci mettiamo….una Asi 120mm con pixel da 3,75? Proviamo a vedere:

TELESCOPIOFOCALEPIXEL SIZECAMPIONAMENTO
NEWTON 250MM F/4.9 in ripresa12205,40,91
SW 70 F 7/5 in guida5253,751,47

Ecco, cosi siamo ben lontani dall’ottenere un campionamento corretto tra i due telescopi..in questo modo, ad esempio, se la guida ha uno scostamento di 1 pixel, il mosso registrato dal telescopio di ripresa sarà di ben 2 pixel (tenete sempre presente che un pixel non può essere frazionato). Il sistema di guida correggera quindi dopo 1 pixel, causando un mosso da 1,47 arcosecondi che verranno registrati sul telescopio di ripresa su due pixel (0,91+0,91) con ben 1,82 arcosecondi di scostamento su tutta l’immagine!!! olè!

Da qui bisognerà poi valutare bene sto setup…perchè la domanda è: in questo caso, dove sta l’errore principale? nel tele di guida o in quello di ripresa? Beh, considerando la lunghezza focale del tele di ripresa e l’accoppiamento con un pixel da 5,4 fa capire bene che l’erroreprincipalmente sta li, è la situazione peggiorativa di ripresa perchè potrei avere oltre a questi, anche problemi di seeing e tutto quanto citato nel precedente articolo.

Per inciso: va da se che non sempre si ha il sensore giusto nel taschino, ma di fatto il calcolo di tolleranza è bene farlo PRIMA di qualsiasi acquisto, che sia il tele di guida, che sia il sensore di guida, che sia il tele di ripresa o che sia il sensore di ripresa. Potete giiocare sempre su questi parametri, in base anche alle vostre economie..tenendo presente però che campionare BENE in ripresa ha un vantaggio reale sull’immagine finale, mentre campionare bene solo a rapporto tra i telescopi senza curarsi di un sovracampionamento nella ripresa, non è detto che porti sempre a risultati efficaci in termini di qualità. Quindi la regola che suggerisco è questa:

  1. Hai già comprato il sensore di ripresa? Bene, lavora sul tele di guida e sulla camera di guida
  2. Hai già comprato il sensore di ripresa e quelo di guida? Bene, lavora sulla cosa che costa meno..adegua il telescopio di guida e cerca il miglior compromesso.

L’astrofotografia, come sempre, è l’ARTE DEL COMPROMESSO.

Ed infatti…se al telescopio di ripresa gli metto un sensore con pixel da 9 micron…vediamo cosa accade..

TELESCOPIOFOCALEPIXEL SIZECAMPIONAMENTO
NEWTON 250MM F/4.9122091,52
SW 70 F 7/55253,751,47

Ecco, qua la situazione è totalmente cambiata!! Cioè i telescopi come si vede SONO GLI STESSI. Cambia solo UN SENSORE. Ma il risultato reale è che ad esempio se l’autoguida sposta di mezzo pixel (0,5) la ripresa nemmeno si accorge! Contiene l’errore e quindi la stella sarà tonda.

Immagina quindi quante valutazioni è opportuno fare prima di dire “l’astrofilo X dice che va bene quel sensore quindi lo compro e amen”. Potresti fare la cosa piu sbagliata sul tuo setup E LO PUOI SAPERE SOLO TU! Non fidatevi cosi alla cieca…MAI.

Si, ma mio cugino riprende con un telescopio da 200mm di focale su un RC8 e ha la stella tonda!!!!

Certo! Ma se non mi dici che campionamenti ha sui due telescopi, non mi stai dicendo niente! Di fatto, il cugino può mettere in ripresa un pixel da 20micron, in guida un pixel da 1 micron e potrebbe guidare anche con un cannocchiale trovato nell’uovo di pasqua! Primo: bisogna almeno cercare di capire se lui SA, o se ha azzeccata, a braccio…Secondo: bisogna vedere se il cugino CE LO DICE che ha fatto ste valutazioni. Potrebbe aver dato per scontato che tu le sappia o semplicemente sta facendo il figo, cosa che ultimamente in sta passione avviene piuttosto regolarmente! Ma questo, come è dimostrato, non implica che TU astrofilo impanicato, possa guidare nella stessa configurazione di focali avendo in ripresa il pixel di una webcam da smartphone e in guida una padella!

Quindi MAI fidarsi, mai prendere per buono tout court. A corollario vi faccio un esempio…due anni fa mi son dotato di una lodestar. Bene, il pixel da 8 che la lodestar ha non si accoppiava con nessuno dei miei ben 5 sistemi di ripresa, solo con uno che però non potevo utilizzare per via di una brutta vignettatura o al massimo con una guida fuori asse! Fortunatamente quella camera la presi per una situazione diversa, una postazione fissa in capo a un osservatorio e volevo avere il mio sistema di guida, altrimenti quelli sarebbero stati soldi spesi malissimo in un dispositivo che sulla carta è PERFETTO, le impressioni e recensioni sono PERFETTE ma nei miei sistemi era DISASTROSO. Oggi l’amica lodestar lavora nel mio osservatorio con grande felicità…

Ok, quindi su che parametri mi posso attenere?

Ovviamente, come per il campionamento, anche qua bisogna stare attenti alla troppa precisione (che non porta a scegliere) o alla mancata precisione (che porta a sbagliare). La via di mezzo è la migliore. Prestate però attenzione a un aspetto…programmi come PHD hanno una risoluzione che mi pare si attesti intorno allo 0,2 px. Cioè corregge fino a un massimo di 0,20 pixel sulla media del numero di pixel di un centroide perfetto. Usando la matematica possiamo dire quindi che il sistema corregge 0,20 su 1, quindi in un rapporto 1 a 5, un quinto di pixel o 1/5 della risoluzione.

Ipotesi…nel mondo dei perfetti, se io riprendo a 1 arcosecondo e guido a 5 arcosecondi, se il mondo smettesse di vivere, l’aria di muoversi, la montatura galleggiasse, nessuno usasse l’auto e se nessuno respirasse, se cessasse anche lo scorrere del tempo, sicuramente una posa dritta su 10 ce la porteremmo a casa…PHD lo fa. LOL

Questo misunderstanding tra potenzialità reali e teoriche causa gioie e dolori….

Gioie, perchè ovviamente possiamo essere piu laschi nei rapporti, già un 2/3 tra i due va benissimo ed è di lusso.. tenendo però sempre presente che un campionamento similare tra i due sistemi è sempre preferibile (quindi pixel grande in ripresa, pixel piccolo in guida, salva il didietro nella maggior parte dei casi),

Dolori, perchè demandare sempre tutto all’elettronica equivale a fare (ad esempio) brutte sessioni di ripresa sul campo e mal calibrate e sperare che Pixinsight faccia il miracolo…. No???

Ahimè, non è cosi che funzionano i giochi, i sistemi devono essere ben calibrati. Sia che stiamo parlando di guida, sia di calibrazioni di immagini, sia di quel che si vuole…bisogna attenersi almeno a una logica ferrea di valutazione. DOPO viene il divertimento, DOPO viene l’elaborazione tirata, DOPO viene il contesto estetico…prima viene il bilanciare bene le cose e il lavorare con cognizione di causa, diversamente i telescopi prima o poi inizieranno a prendere la polvere. E’ inutile accontentarsi di un sistema di guida non ben studiato a tavolino per rimandare poi tutto all’elaborazione, ..anche perchè spesso e volentieri in elaborazione il software ti molla e se ne tira fuori…(con tanto di mille domande al seguito sui parametri da impostare per correggere una stella ovale e povero esperto al seguito che deve perdere ore a scriverti per correggere la tua inerzia al problem solvin sul campo).

CONCLUDIAMO

In conclusione, ritiro fuori un softwarino semplice che ho creato qualche anno fa e che aiuta nelle valutazioni. Lo trovate, insieme al suo articolo di spiegazioni, al seguente link: –> FACEPALM

Basta inserire i dati e i calcoli li fa un pò lui.

Ora, ovviamente nonsi “consuma” tutto qua i discorso sull’autoguida ma subentrano in successione altri elementi..ad esempio gli aspetti relativi alla MECCANICA dell’Autoguida e che vengono DOPO una attenta valutazione dei campionamenti sono questi e rappresentano delle verifiche da fare continuamente sia sul campo che a casa:

  1. Bilanciamento: bisogna BILANCIARE bene il telescopio
  2. Allineamento Polare: bisogna farlo BENE e non in maniera approssimativa
  3. Regolazione dei Giochi: sulle montature tipo Eq6, Heq5 e altri modelli è opportuno agire ogni cambio stagione per effettuare le veriifche dei giochi VSF e Corona
  4. Regolazione del cannocchiale polare: regolarlo ogni stagione
  5. Cablaggi: osservare bene che non tirino
  6. Focheggiatore del telescopio di guida: non deve flettere. Evitare di lasciare a penzoloni i cavi, al massimo tirarli su e fissare un occhiello passacavi sul tubo
  7. Sistema di fissaggio del telescopio di guida: evitare gli anelli come la peste, sfruttare attacchi solidali e con facili sistemi di serraggio
  8. Per ultimo: una corretta impostazione del software di guida…e qua si consumano altri misunderstanding.

Di tutti questi aspetti ne parlerò in altri tutorial, con calma. L’importante ora era definire l’importanza del campionamento.

Cieli sereni

Fabio Mortari

Uno dei problemi piu banali da risolvere quando si fa ricerca è l’orientamento del sensore. Chiunque abbia letto qualcosa nel net che tratta come argomento la ricerca scientifica amatoriale, si è imbattuto nella classica frase

 

..per far funzionare correttamente la calibrazione, è necessario orientare la camera in modo che gli assi del sensore corrispondano agli assi del telescopio

Che significa?

Innanzitutto va specificato il motivo di questa frase, e lo spiego anche se è banalmente intuibile. Quando si effettuano rilevazioni astrometriche, come nel caso delle stelle doppie, i valori che interessano sono l’angolo (Theta) e la separazione (Rho).

Prendiamo ad esempio l’immagine seguente:

Il sistema binario che interessa per questa spiegazione è WDS STF 779 AB. Come possiamo vedere ci sono due stelle, una piu grande e luminosa (A) e l’altra piu piccola (B) e sono separate tra loro. Questo è il valore di separazione. Inoltre fingete di creare un cerchio che abbia il centro nella stella A e la circonferenza che passa per B.

Bene, fingendo che questo sia un orologio che ha le sue ore 12 verso il nord della fotografia, potremmo dire che la componente B si trova a ore 3.5. Precisamente, parlando di angolo, possiamo dire che riporta un valore di Theta pari a 120° circa.

Bene compreso questo semplice concetto, dobbiamo rendere assoluto questo valore. Perchè dico assoluto? Perchè trovandoci nello spazio, se non abbiamo un riferimento fisso gli angoli possono assumere qualsiasi valore. Ecco quindi la necessità di orientare la camera nel modo corretto, in modo che chiunque al mondo orienterà il suo strumento nella maniera analoga e chiunque ripetendo la misura otterrà piu o meno lo stesso valore.

Per il corretto orientamento del sensore, bisogna tenere presente gli assi del sensore stesso, dove il NORD è la parte alta (solitamente sul ccd è segnato dal marchio di fabbrica o da un led di accensione) e l’Ovest è uno dei due lati.

Per rispettare la corretta posizione, si ponga il telescopio verso la polare. Se avete un telescopio il cui focheggiatore è posto nella culatta (come gli Schmidt Cassegrain ad esempio) non dovete far altro che mettere la camera dritta per dritta nel vostro focheggiatore. Se avete un sensore la cui scocca è rotonda, dovete garantirvi che la parte alta del sensore corrisponda alla parte alta della circonferenza del telescopio. Fatto questo, la camera avrà l’allineamento “naturale” ai restanti assi.

Se invece avete un Newton, che ha il focheggiatore di lato, non dovrete far altro che prendere a riferimento la base quadrata del focheggiatore ed allineare la camera secondo gli assi della base. Quindi il Nord andrà verso l’alto (la direzione opposta a quella in cui ci sono le manopole per intenderci)  e l’ovest (ad esempio) verso l’apertura del telescopio.

 

Una volta ottenuto l’orientamento del sensore, siete pronti per iniziare le procedure di calibrazione e successivamente di misurazione.

Ricordatevi che piccoli disallineamenti in fase di allineamento possono essere concessi e risolti dai software che calcolano un’eventuale deriva (chiamata ‘delta’) ma sia chiaro che una volta che è stata effettuata una ripresa con il sistema di riferimento, non bisogna toccare piu nulla.

Infine, le sessioni iniziano sempre con una calibrazione e finiscono con la rirpesa dello stesso sistema di calibrazione in modo che a fine serata potrete verificare che i valori corrispondano e garantirvi che nulla siè mosso durante la sessione di ripresa.