Articoli

Bene, abbiamo visto nei precedenti articoli, di cui riporto LINK e LINK , quanto il sistema di autoguida e ripresa siano legati tra loro da valori numerici relativi al campionamento corretto tra i due telescopi, ripresa e autoguida.

Ovviamente, come ben sappiamo, tutto non si può ricondurre ad una manciata di numeri per “dormire” sonni tranquilli, perchè altrimenti la questione sarebbe sempre semplice e facilmente intuibile. Di sicuro quanto specificato in precedenza rappresenta IL PRIMO ASPETTO di cui tenere conto quando si approda al mondo dell’astrofotografia a lunga posa, ma non racchiude ovviamente tutto il panorama di casistiche che possono sporcare la regolarità necessaria ad una autoguida perfetta.

Cerchiamo un attimo di contestualizzare un concetto basilare, che spesso rimane piuttosto nascosto nelle impressioni e nelle valutazioni. Torniamo al solito esempio di un pixel da 3,75 micron messo su un qualsiasi telescopio di guida e mettiamo in guida il nostro sistema.. Parliamo di meccanica di precisione er inciso….

Infatti, supponiamo ad esempio che siamo in un campionamento 1 a 1, cioè un arcosecondo per pixel (che aiuta a capire) e che la nostra guida stia procedendo con un errore medio in pixel pari a 0,50. Un pixel è 3,75 micron…cioè 3,75 millesimi di millimetro…lo scostamento è pari a 0,5 quindi praticamente tutta la strutturasi sta muovendo per mantenere il centroide di una stella minuscola entro mezzo pixel, e quindi facendo un pò i conti della serva, tutto il sistema ci sta fornendo una affidabilità tale da contenere l’errore medio in circa 1,8 micron!!! cioè 0,0018 millimetri!

Per i piu precisi: una corona di una Azeq6 ha un diametro di 92,5 mm, la cui circonferenza si sviluppa in 290,4 mm circa. La montatura fa una rotazione completa in 24 ore, quindi (290,4 : 24 = 12,1 mm/h, –> 12,1 mm/h : 60 = 0,201 mm/min. 0,201 / 60 = 0,0033 mm/secondo ergo 3 Micron al secondo. In un rapporto di campionamento ideale 1 arcsec/px considerando il mio pixel pari a 3,75 micron se la guida in AR ha un rms in arcsec/px di 0.5, la meccanica “muove” di 0,00187 pari a 1,87 micron.)

Per intenderci in scale di dimensioni fisiche, citando wikipedia….ecco alcune misure in micron:

1-10 µmicrondiametro tipico di un batterio
1,55 µmicronlunghezza d’onda della luce usata nelle fibre ottiche
6-8 µmicrondiametro di un globulo rosso umano
6 µmicronspora dell’antrace
7 µmicronspessore di un filo di ragnatela
7 µmicrondiametro del nucleo di una tipica cellula eucariota

Bene, possiamo quindi dire che in un mondo ideale, un sistema di guida ben calibrato e gestito arriva a misure anche INFERIOR. A volte si raggiunge tranquillamente uno 0,3 px o ancora meno, per i piu fortunati e soprattutto PRECISI.

Ora se vi concentrate un attimo capite subito con che razza di precisione dobbiamo avere a che fare. Cioè, stiamo parlando di scostamenti teorici che stanno SOTTO di 4/5 volte uno qualsiasi dei globuli rossi presenti nel vostro sangue.

Un minuto di silenzio per farvi toccare con mano cosa avete di fronte.

Prendete il batterio del vostro raffreddore invernale..bene, quello è piu grande dello scostamento dell’esempio citato. Ora, sappiamo che per espellere e mettere in circolo un batterio basta uno starnuto no? E lui svolazzerà allegro di starnuto in starnuto per chilometri e chilometri. Ecco, la vostra autoguida può arrivare ad avere una precisione meccanica inferiore alle dimensioni di quel batterio, col risultato che basta uno starnuto a mandare tutto a put…a fan….alla malora.

Anticipato questo BELLISSIMO contesto che è causa del nostro esaurimento nervoso, osservate la vostra montatura. Ecco, quello che avete davanti è un piccolo miracolo della meccanica sotto un certo punto di vista perchè poste le condizioni base, se ben gestita (e se non ci sono problemi nativi di costruzione), se lavorate bene sul setup tenendo presente questo banalissimo ragionamento, il risultato in termini di precisione raggiunta è microscopico. Ma attenzione…..perchè date appunto queste tolleranze cosi “risicate” non è sempre Natale. PER NESSUNO.

iNFATTI, questo ci pone di fronte ad una serie di considerazioni di circostanza che è bene tenere presente e cioè che se è VERO che i numeri sono piu o meno questi, ci troviamo di fronte a qualcosa che va considerato molto bene, che va TRATTATO molto bene.

Tenete in mente quella scala che vi ho citato poco fa..bene, mettete ora un leggero vento al traverso. Che accade? Nemmeno a dire…ora, immaginate la stessa situazione, ma in una montatura non ben bilanciata. che accade? Bene, altro caso…prendiamo ad esempio un cavo che si sposta…ebbene si, l’autoguida ne risente. E tanto. Tantissimo! Vediamo alcun punti focali meccanici del contesto…

LA GUIDA PERFETTA E’ TEMPORANEA

Eccola là..ta dan! E’ vero, considerando la precisione in gioco, la guida perfetta è SOLO ed ESLCUSIVAMENTE una condzione temporanea. E non può essere altrimenti!! Questo non significa certo che non si possa riprendere per piu notti con una guida eccellente,anzi…ma è bene sapere che la temporaneità si esprime nella sequenzalità degli interventi che si susseguono di secondo in secondo e che cambiano rapidamente da un momento all’altro. Questo implica ad esempio, che un secondo fa tutto andava bene ma all’improviso..sbang. Oppure, può capitare che per lo stesso oggetto ripreso la sera prima, quindi stessa zona di cielo, tutto filasse liscio mentre stasera…non ne vuol sapere di andare.

Questo apre ad una serie di problematiche molto discusse in ambito astrofotografico, in quanto la soluzione di ogni problema legato alla guida è spesso riconducibile ad una casualità di situazioni talmente personali e insite nel “momento preciso in cui ” da rendere particolarmente difficile un reale problem solving che non si basi in realtà su una MEDIA di utilizzo. Detto in parole povere, se si guarda alla serata singola in cui ha guidato male, raramente si ottiene una reale idea dei problemi (a meno che non siano MACROSCOPICI) e per valutare la qualità del proprio sistema è bene riferirsi ad una media di utilizzo. Quindi, non strapparsi i capelli se fino a ieri ha guidato bene e oggi no…piuttosto, viverla anche serenamente e valutare se è un problema che si presenta spesso o meno aiuta di sicuro ad avere le idee molto piu chiare. Saltelli, derive, momenti di incertezza etc, sono per lo piu dovuti al caso e alle condizioni temporanee se riguardano una serata….se invece è un problema continuo allora bisogna ricorrere a un problem solving piu consistente e cercare di analizzare tutto, partendo da sè stessi.

PROBLEMATICA STATICA O DINAMICA?

Considerando che una montatura a questo punto dovrà andare “mediamente “bene, otterremo questo risultato solo se siamo davvero precisi. Precisi in tutto e non è una banalità. Ripensiamo un attimo ai micron con cui abbiamo a che fare, e analizziando un pò la serie di problematiche comuni, potremmo dividere le problematiche legate all’autoguida in due macro-casistiche, statiche e dinamiche. Quelle “statiche” sono le casisitche che portano erorri dovuti ad esempio a una condizione di errato montaggio, o di errato allineamento polare ipotesi, mentre quelle dinamiche sono quelle che incorrono durante la serata (ad esempio si alza il vento, peggiora il seeing etc).

Divido i due contesti perchè sull’errore introdotto da una condizione statica possiamo SEMPRE intervenire fisicamente (non via software!) e il piu delle volte vedremo che sono causati da noi ed è l’errore introdotto da una condizione statica che introduce l’errore.

Diversamente, come possiamo intuire benissimo, sussiste un errore introdotto da una condizione dinamica che non è sempre prevedibile e spesso è questa tipologia di errore su cui può intervenire un software come PHD o altri software di guida.

Interpretandola in questo modo, dovrebbe essere facile arrivare a pensare che ci sono correzioni che un software di guida può apportare e condizioni invece dove il programma di guida peggiora solo la situazione. Facciamo un pò di esempi

ERRORI DOVUTI A CONDIZIONI STATICHE

Una serie di errori dovuti a condizioni statiche sono TUTTI quelli legati ad un errato montaggio o a un problema meccanico e hanno la benedetta (si..benedetta!!) caratteristica di presentarsi quasi sempre se non abbiamo schematizato a dovere come preparare un setup alla ripresa….e in questo caso avremo problemi in tutte le sessioni di guida. Esempio, un errato allineamento polare (o approssimativo perchè di norma non siamo accorti), uno stazionamento in bolla eseguito grossolanamente o come è capitato non eseguito affatto, un treppiedi non fissato a terra a dovere o non stabile. Tra questi poi rientrano anche problematiche meccaniche piu sostanziali, come ad esempio un telescopio non ben fissato ai suoi anelli, una flessione differenziale introdotta da un focheggiatore pessimo oppure un gioco negli organi meccanici troppo lasco, un grasso troppo duro (usare quello ai saponi di litio a me ha risolto un mucchio di problemi), fino ad arrivare a problemi piu profondi, ad esempio un cuscinetto rovinato, una corona particolarmente ovalizzata, Di tutte queste casistiche, il 90% rientrano nella prima parte, e cioè errori introdotti da noi astrofili nelle fasi di montaggio o manutenzione della montatura., considerando i numeri di astrofili è abbastanza raro che a livello meccanico profondo qualcosa sia decisamente rovinato o fabbricato male ,per cui prima di gridare “al lupo”, è bene SEMPRE garantirsi di fare le cose bene.

ERRORI DOVUTI A CONDIZIONI DINAMICHE

Una serie di errori introdotti da condizioni dinamiche, invece, sono dovute a condizioni temporanee, che si verificano magri in quel preciso istante e non sono facilmente prevedibili. Questo può essere ad esempio il caso del vento che soffia leggero ma a brevi folate, da un brusco calo di temperatura con successivo adeguamento termico, da un seeing in peggioramento, da un oggetto ripreso a meno di 25° sull’orizzonte dove il seeing fa brutte sorprese e dove notoriamente le montature faticano un pochino di piu ad abbattere l’inerzia al movimento. Ecco, queste sono tutte condizioni sostanzialmente temporanee, e con l’esperienza si impara che bisogna essere piu permissivi se si utilizza una montatura di fascia medio-economica (ad esempio una eq6).

Ora, viste grossolanamente queste casistiche, io mi chiedo...”OK, ma quale tipologia di errori può correggere il software di guida?”

COSA NON CHIEDERE A PHD

Seguendo questo filo logico arriviamo a capire benissimo che PHD non può intervenire con successo in tutti quei casi in cui l’errore lo introduciamo noi. La bibliografia online è PIENA di porblemi imputati a montature e software e che poi si risolvono con l’accorgimento in piu, con la dedizione in piu nelle fasi di montaggio, con l’opportuna valutazione delle reali potenzialità di guida del sistema. E in centinaia di migliaia di post il problema si conclude sempre con “ah no, io non avevo messo in bolla” o “non avevo stretto il treppiede”. Questo causa la grandissiam confusione che qualsiasi neofita incontra quando approda all’astrofotografia…capirci qualosa realmente.

A questo punto, quindi, non possiamo chiedere a PHD di guidare bene una montatura che è stata bilanciata male. Non gli possiamo chiedere di elaborare un intervento di guida opportuno se abbiamo un gioco negli accoppiamenti troppo lasco.

Se non abbiamo stretto le frizioni, se non abbiamo prestato attenzione ai cavi. Questo PHD non lo farà e non lo farà mai! Nonè stato concepito per SOSTITUIRSI alla precisione UMANA necessaria, ma come ogni software di guida è stato concepito per INTERVENIRE nelle condizioni DINAMICHE che si susseguono nel corso della serata. Quindi ok, ad esempio tira un pò piu di vento? allora possiamo chiedere a PHD di intervenire con un algoritmo diverso. Peggiora il seeing? allora possiamo chiedere a phd di aumentare la durata delle pose o di intervenire nei fatidici MinMov che hanno si una loro importanza ma spesso sono troppo quotati.

Di fatto, una montatura gestita da un astrofilo cosciente, permette a PHD di fare ciò per cui è stato concepito..e cioè “Pull Here DUmmy!” ergo “Schiaccia qua scemo e lasciami fare”. Se si lavora bene a casa e sul campo, PHD non ha bisogno di nulla per funzionare, magari qualche accorgimento (ad esempio se siamo vicini al polo potrebbe non calibrare bene, ma questo lo vedremo..), Di norma, si schiaccia il pulsante e Va. Al massimo possiamo poi migliorare qualcosina per quel che riguarda le situazioni DINAMICHE ma partendo SEMPRE da una base di partenza valida. E quella base di partenza siamo noi.

Avere ottima precisione nelle fasi di preparazione dei setup (da casa fino al campetto) permette di diventare poi dei problem solver piu accurati e piu sostanziali, seppur questo diventa poi un discorso ancora piu complesso. Ma se ci mettiamo nella condizione di lavorare bene e soprattutto con spirito critico, saremo d’aiuto al software di guida senza delegarlo a fare cose per cui non è stato costruito.

Concludo questa breve rassegna con una raccomandazione: non fissarsi MAI TROPPO sui grafici. Perchè questi sono,. appunto, temporanei…ciò che comanda è la foto, e solo lei.

Se vogliamo sapere se stiamo guidando bene, si prende il grezzo appena scaricato, si mette a 200x e si verificano le stelle al centro. Fine. Non ai bordi, non di traverso, non ad minchiam..ma solo al centro.

Freghiamocene dei grafici se in queste condizioni abbiamo una stella bella tonda e puntiforme. I grafici servono solo per avere un’indicazione di massima sui movimenti della montatura e per effettuare un pò di diagnostica e trattano sostanzialmente il dato appena “trascorso”.

A Maggior ragione, non bisogna nemmeno fidarsi di grafici piatti perchè nemmeno quelli sono garanzia di buone pose..basti pensare alle flessioni differenziali ad esempio, dove la guida è perfetta ma sta correggendo l’errore di scivolamento del telescopio di guida mentre nella ripresa……Bisogna sempre prendere l’immagine, si ingrandisce a 200x etc…

Cieli Sereni

Fabio Mortari

Eccoci dunque arrivati alla fase conclusiva di questa parte di spiegazioni, con il rilascio del PCB.

Il PCB che ho creato lo potete vedere di seguito:

SCARICATE IL PDF DA QUESTO LINK!

Su questa board creata, se ne possono dire mille, si poteva fare oggettivamente meglio, non è bella da vedere  Considerate che io non sono in grado ad oggi di stampare su due facce le schede presensibilizzate ma solo su una, imparerò presto spero ma al momento preferisco cose “pratiche” e piu comode, anche se meno valide dal punto di vista dell’eleganza di progettazione.Inoltre come spesso capita, quando trovi “la quadra” e tutto funziona, non ci si pone poi il problema di farlo “meglio” semplicemente si adempie allo scopo e  finita li. La board vi garantisco che funziona.

Inoltre, considerate questo un lavoro che ho prodotto senza avere chissà quali basi di elettronica quindi consideratela sempre una “beta” e se avete consigli per migliorare, non aspetto altro. Lo scopo di tutto questo è darvi uno spunto, non fare il figo quindi, il progetto è di tutta la ormai numerosa comunità che segue questo blog.

COME STAMPARE E PREPARARE IL PCB

Il PCB l’ho creato per la stampa tramite bromografo. Si prende un foglio “lucido” e una stampante laser. Si stampa tenendo bene in mente che dovrà essere stampato a dimensione originale (alcune versioni di Adobe propongonodi default una stampa a pieno foglio).

A quel punto si prepara, come detto in precedenza, il materiale “chimico”, ricordandoci che

a) la soda caustica va versata piu o meno in queste dosi: un cucchiaio da minestra in 0.75 lt di acqua – e si deve far sciogliere bene

b) tenersi sempre una vaschetta d’acqua di rubinetto per il risciacquo

c) scaldare il cloruro ferrico a bagnomaria se si lavora in ambienti molto freddi.

Nota: la stampa va messa sul bromografo con la parte in cui è depositato il toner voltata verso l’alto (ergo, verso la superficie della piastra presensibilizzata che andrà incisa)

Ricordatevi poi di far scaldare un pò i neon del bromografo prima di iniziare la procedura, questo vi eviterà grane dovute allo sfarfallio dei neon a freddo.

Il PCB creato, una volta sciolto il rame in eccesso son il cloruro ferrico, andrà poi forato. Per forarlo

Vediamo ora nel dettaglio le varie parti del PCB, con una immagine che vi servirà da specchietto per installare correttamente tutti i componenti:

 

Nota: le due piazzole con scritto PWM vanno collegate insieme da un ponticello.

E per finire la lista delle corrispondenze tra sigle e componenti

[pdf-embedder url=”https://www.osservatorio-hypatia.it/wp-content/uploads/2017/02/Fritzing-Bill-of-Materials-3.pdf” title=”Fritzing Bill of Materials”]

 

Bene, fatto questo il tutorial è quasi finito. E’ probabile che in futuro ci sia un intervento da parte del mio carissimo amico Michele per parlarci del metodo di trasmissione del freddo che ha utilizzato per la sua Reflex.

Se volete scaricare il materiale in download, ho preparato una cartella con dentro tutto il necessario.

SCARICA CARTELLA COMPLETA

Per quel che riguarda ciò che è di mia competenza, invece, scriverò a breve un’appendice a questo tutorial proprio per osservare la creazione della board insieme, corredata di documentazione fotografica. A presto!

Eccoci dunque arrivati ad un argomento molto importante per quanto riguarda l’astrofilia, piu specificatamente per l’argomento astrofotografico.

La questione verte sostanzialmente in una scena tipica che si presenta con una certa costanza durante le sessioni di astrofotografia; hai montato il tuo setup, una Eq6 che porta un Newton 250 f/5, un tubone bello grosso, con il sensore collegato al focheggiatore. E’ normalissimo che in questa situazione si venga avvicinati da persone che come prima domanda chiedono “A quanti ingrandimenti stai fotografando?”

Soprattutto quando ero agli inizi, io stesso ero caduto in questa specie di tranello, interpretando il telescopio come se fosse uno zoom di cui tipicamente vengono espresse le potenzialità con un valore di ingrandimento massimo. E, analogamente, mi son trovato nella situazione contraria,  in cui mi è stata posta la domanda e ho dovuto cercare una risposta adeguata.

 Cerchiamo quindi di essere chiari: non è sbagliato parlare di ingrandimenti quando si fa astrofotografia. Ma è fuorviante fornire un valore di ingrandimento basato su valori numerici con affianco un “per” (x), come ad esempio 100x o 10x.  Questo discorso, come vediamo immediatamente, è differente per i visualisti dove gli ingrandimenti sono forniti da una semplice formula tra i millmetri dell’oculare rispetto alla focale del telescopio. La formula è questa

focale/mm oculare = ingrandimenti

Esempio banale: se abbiamo un telescopio con 750mm di focale a cui applichiamo un oculare da 10mm, avremo un ingrandimento di 75x.

Ma quando facciamo astrofotografia non abbiamo oculari (a meno che non stiamo facendo proiezione dell’oculare) e quindi ricavare un valore di ingrandimento in queste modalità può portare a non comprendere appieno la noce della questione

CALCOLI DA FARE

Ok, ci siamo, vediamo di entrare in partita ed andiamo subito al sodo: l’unità di misura relativa al campo inquadrato da un sensore sul telescopio, è l’arcosecondo.

L’arcosecondo è un’unità di misura angolare, che corrisponde a 1/3600 di grado. Per renderlo piu “tangible” (anche se  corretto dal punto di vista concettuale ma meno da quello pratico) potreste immaginare la volta celeste come un enorme orologio analogico. Mentre il rapporto tra la lunghezza focale e la dimensione del pixel possiamo interpretarla come il movimento minimo possibile della lancetta.  Ne deriva che, in seguito al rapporto appena citato tra la focale e la dimensione del pixel,  lo scattino della lancetta tra un secondo e l’altro disegnerà nella volta celeste il nostro ipotetico arcosecondo,  che possiamo quindi definire come la porzione di cielo inquadrata ad una determinata focale con un pixel di dimensioni X. Boom. Non si capisce niente…

Va bene va bene…Facciamo allora un altro esempio. Fingiamo di essere mosche, con gli occhi a quadretti.

MOSCA

Chiamiamo i quadretti “pixel”. Guardiamo il cielo a occhio nudo: ogni quadretto del nostro occhio “a mosca” inquadrerà una porzione di cielo. Mettiamo davanti agli occhi un cannocchiale, ogni quadretto del nostro occhio inquadrerà una porzione di cielo minore rispetto a prima. Noi dobbiamo sapere quanto cielo viene inqudrato da ogni quadretto dell’occhio della mosca.

Compreso questo deduciamo un aspetto importante, soprattutto per noi neofiti: abbiamo capito uno dei motivi per cui all’interno delle schede tecniche dei sensori astronomici viene dichiarata la grandezza in micron del singolo pixel. Lo voglio evidenziare, perchè quando scelsi il primo sensore per effettuare l’autoguida, non mi curai assolutamente di questo parametro, tantomeno mettendolo in relazione alla focale del telescopio di guida stesso con il rischio di trovarmi con un sistema di guida non opportuno.

Vediamo quindi la formula banalissima per sapere quanti arcosecondi vengono inquadrati da un pixel su un telescopio, valore la cui definizione instriseca è “campionamento”:

C = (dimensione pixel x 206265) / Focale utilizzata

Dove

c = valore di campionamento espresso in arcosecondi per pixel

dimensione pixel = dimensione in millimetri del pixel

206265 = costante radiale

Focale utilizzata = focale utilizzata per riprendere.

Esempio: supponiamo di avere un telescopio da 1250mm di focale e che vogliamo riprendere un oggetto celeste con una reflex, tipo la canon Eos450D

Abbiamo quindi: focale = 1250mm, pixel = 5,2 micron

Convertiamo subito i micron dei pixel in millimetri: 5,2/1000 = 0,0052

Applichiamo la formula

C = (0,0052*206265)/1250 = 0,85 arc/sec per pixel

Analogamente, supponiamo di riprendere con un telescopietto da 347mm di focale

C = (0,0052*206265)/347 = 3,09 arc/sec pixel

Come vediamo, piu che parlare di ingrandimento, possiamo riferirci a questo valore per comprendere che anche in questo caso, a parità di sensore, una focale piu spinta diminuisca la porzione ripresa per ogni pixel, viceversa accorciandola, aumenti.

Questo inoltre suggerisce un altro aspetto: cioè che se io volessi sapere quanta “porzione” di cielo riprende il mio sensore con un determinato telescopio, posso semplicemente moltiplicare il valore arcosec/px per il numero dei pixel presenti nel sensore.

Rifacciamo quindi il calcolo tenendo presente i due campionamenti, sapendo la risoluzione della reflex che è 4,272 × 2,848.

a) Newton 1250mm di focale con canon

 0,85 x 4,272 = 3.631 arcosecondi in larghezza del sensore

e 0,85 x 2848 = 2420 arcosecondi in altezza del sensore

Li dividiamo per 60 e abbiamo il valore in primi che diventa: 61 x 40 circa.

b) Rifrattore 347mm di focale con canon

3,09 x 4272 = 13200,48

3,09 x 2848 = 8800,32

Li dividiamo per 60 e abbiamo il valore in primi che diventa = 220 x 146 e rotti.

Abbiamo quindi visto che a parità di sensore,  aumentando la focale diminuisce la quantità di cielo ripresa per ogni singolo pixel e analogamente diminuisce il campo inqudrato dal sensore.

L’IMPORTANZA DEGLI ARCOSECONDI

Fino ad ora ci siamo concentrati nel comprendere come ricavare il dato, veidamo ora in cosa può esserci utile

a) Nello stabilire opportunamente il sistema di guida: conoscendo quanto “cielo” viene visto da un pixel nel sistema di ripresa e quanto “cielo” viene visto da un pixel nel sistema di guida, posso comprendere il rapporto reale che esista tra i due sistemi e quindi valutare se il sistema di guida campiona in maniera sufficiente a consentire

b) nella possibilità di conoscere le posizioni degli astri: tipica condizione su cui si basa qualsiasi sistema di plate solving, siamo nel campo dell’astrometria. Tramite la conoscenza del valore di campionamento, abbiamo la possibilità di conoscere la distanza angolare tra due astri, e riconoscere cosi le velocità (ad esempio) angolari di spostamento di un asteroide, o di una cometa, o semplicemente indivudare un campo inquadrato tramite il calcolo delle distanze tra piu stelle

c) nella possibilità di decidere con quale ottica riprendere in base al seeing: essendo il seeing determinato dal movimento delle masse d’aria che spalmano la figura della stella ed essendo anch’esso espresso in arcosecondi, possiamo decidere in base alle condizioni del seeing con quali accoppiate sensori telescopio operare in modo da facilitare la raccolta del segnale. Ecco un esempio di una tabella prelevata dal sito treckportal, tabella relativa a campionamenti consigliati per riprese planetarie:

tab_campionamento

d) Nella conoscenza findamentale del proprio sistema ottico basato sul campionamento: considerando che il campionamento rappresenta un indicatore qualitativo relativamente alla registrazione dell’informazione sul sensore, e considerando che questo viene teoricamente considerato efficace per valori che variano da 1,5/2 arcsec/pixel, abbiamo modo di comprendere quanto il nostro sistema sarà pronto a registrare correttamente le informazioni. Qualora si abbiano quindi valori troppo alti, o troppo bassi di campionamento, subentra il rischio di ottenere pose piu rumorose ed effetti indesiderati sui nostri frame e che richiederanno quindi interventi di post elaborazione piu incisivi.

Questi sono solo alcuni degli aspetti che suggeriscono l’importanza di conoscere quindi il valore di campionamento in arcosecondi del nostro sistema di ripresa. Farò poi un ulteriore articolo dedicato esclusivamente all’autoguida e al rapporto tra questa e il sistema di ripresa, argomento spesso messo da parte da noi neofiti e che invece merita un focus approfondito sopratutto nel momento dei primi acquisti.

Stay Tuned e se non è chiaro, chiedete!

Parlando con diversi astrofili/astrofotografi neofiti, mi sono spesso imbattuto nella questione del “campo inquadrato”. Ho notato che il piu delle volte, per chi inizia, questo aspetto non suscita il dovuto interesse rispetto alla scelta di un determinato telescopio o di un determinato sensore fotografico. Anche io, soprattutto durante i primi scatti, preso dalla foga del fotografare a tutti i costi non mi sono  curato effettivamente di questo problema dal momento che all’inizio si ha poca strumentazione a disposizione e quindi ci si abitua a fare con “ciò che si possiede”.

Ma prima o poi per tutti arriva il momento dell’opportunità commerciale, dell’offerta all’ultimo momento, della proposta irrinunciabile di acquisto di uno strumento o piu semplicemente della “strumentite” e fa capolino la domanda “ma andrà bene per ciò che voglio fare?”

E’ il caso tipico di chi (me compreso) si è trovato durante il percorso ad innamorarsi dell’ammasso nebulare o stellare aperto (ad esempio, molti oggetti del catalogo IC)

Focalizzato questo aspetto, mettiamolo in stand by per far emergere una situazione ipotetica diversa: venerdi notte sarà sereno. Ok, cosa fotografo? A catalogo sono molti gli oggetti che si potrebbero riprendere, alcuni erano già nelle nostre mire da tempo, altri invece si propongono durante la ricerca. Si sceglie un oggetto, poi si va sul campo e si fotografa e si capisce solo sul momento che o l’oggetto è troppo piccolo o è troppo grande. Risultato: si rischia di ritornare a fotografare l’oggetto della volta precedente che “si sa che ci sta nel sensore”.

Infine altra situazione: si sceglie un oggetto da fotografare, si arriva sul campo, si posiziona tutto e si inizia a scattare. Ma l’inquadratura non è perfetta e quindi è necessario ruotare la camera. Normalmente, un buon neofita che si rispetti, se ne frega e fotografa. Ma prima o poi arriva il momento in cui ci si accorge di avere l’hard disk pieno di immagini in cui l’oggetto è tagliato a metà, oppure che manca quel piccolo particolare perchè fuori dal campo e bastava ruotare la camera per trovarselo all’interno de frame etc.etc.

Grosso modo abbiamo quindi tre situazioni: l’acquisto di nuova attrezzatura, la pianificazione della serata e la rotazione del sensore per riprender l’oggetto nella sua interezza. Sono tre “problematiche” molto molto comuni, che appaiono complesse per chi inizia ma che sono facilmente risolvibili con una sola azione: la valutazione del campo inquadrato.

CARTES DU CIEL: VALUTARE IL CAMPO INQUADRATO

La valutazione del campo inquadrato la si ottiene tramite una serie di calcoli matematici semplici, che prevedono di aver a disposizione i seguenti dati (essenziali)

a) Numero di pixel/ risoluzione (ad esempio Atik314L 1320×1040)

b) Grandezza in micron dei pixel: questo dato si trova normalmente nella scheda tecnica o con una approfondita ricerca. Da notare però che spesso, soprattutto nel campo delle reflex, si può sbagliare a prelevare il dato corretto perchè ci sono una marea di modelli. Quindi state attenti. Nel mio caso, la Atik ha un pixel size di 6.45 micron

c) la lunghezza focale del telescopio: espressa in mm. Ovviamente, qualora si decida ad esempio di riprendere con un moltiplicatore di focale (ad esempio una barlow), la focale inserita nel calcolo dovrà essere moltiplicata per il fattore della barlow. Tradotto: se io riprendo con un 350mm di focale e inserisco una barlow 2x, la focale di cui tenere conto per valutare il campo è pari a 700mm (350×2)

Bene o male tutti i planetari hanno funzioni automatiche a riguardo, che permettono di valutare in dettaglio il campo. Inoltre ci sono diverse app anche per smartphone che hanno questa funzione, ma il mio consiglio personale è sempre quello di decidere per il software che ti permette di valutare il campo inquadrato di piu telescopi e sensori contemporaneamente in modo da avere una situazione davvero chiara e prendere delle scelte mirate per la serata osservativa.

Nel nostro caso, ho scelto Cartes Du Ciel per tre motivi: il primo è che lo uso ormai quotidianamente e mi trovo davvero bene, il secondo è che è gratuito, il terzo è che permette di valutare fino a 10 situazioni diverse contemporaneamente.  Ma andiamo per gradi.

COME IMPOSTARE IL CAMPO INQUADRATO

Impostare il campo inquadrato su cartes du ciel è particolarmente semplice e si fa in pochi click. Inserirò degli screenshot, se risultano piccoli basta cliccarvi sopra per ingrandire.

a) Configurazione – Mostra

b) Si apre una finestra con molte tabs (o linguette). Andate a destra fino a vedere “Campi Rettangolari. Qui avremo il pulsante CALCOLA, degli indicatori “Rossi o Verdi” e delle righe in tabella.

2

Vediamone i campi: l’indicatore “rosso o verde” ci indica se quel campo è selezionato per essere visualizzato sulla cartina o no (un semplice on off). La larghezza e l’altezza vengono determinate dal pulsante “calcola” che vediamo in seguito. La rotazione è l’impostazione del valore di rotazione del sensore rispetto al suo asse ed è espresso in gradi (0° / 359°). Lo spostamento è lo spostamento del sensore rispetto all’asse di puntamento (valido dal momento in cui con una montatura sola si vogliono riprendere due oggetti con due telescopi diversi: lasciare il valore zero se non si è in questa casistica). Il nome assegnato al campo, io inserisco normalmente il tipo di sensore col tipo di telescopio.

c) Selezioniamo il primo campo (ha dei valori già scritti di esempio che possono essere cancellati) e clicchiamo su CALCOLA. Si apre questa finestra:

ImmagineNei campi delimitati da parentesi rossa, bisogna quindi inserire tutti i valori che servono e nel dettaglio: la focale, la grandezza in micron dei pixel e il numero dei pixel. Cliccando su calcola, verrà calcolato il campo inquadrato.

d) Dopodichè bisognerà spuntare, se non lo si è già fatto, il check box indicato nell’immagine seguente  denominato “visualizza al centro della cartina”

4

ALCUNI ESEMPI DI UTILIZZO

Ecco quindi una pò di esempi per l’utilizzo efficace del campo inquadrato. Nel mio caso, come possiamo vedere dall’immagine seguente, ho selezionato il sensore ATIK314L (notoriamente moolto piccolo) e il telescopio rifrattore TS Star 71 f/5. QUesto è il suo campo inquadrato rispetto alla nebulosa ROSETTA

Come dicevo, possiamo anche fare una serie di valutazioni con tutta la nostra strumentazione, ad esempio nell’immagine seguente ecco i campi inquadrati dai miei telescopi: nei quadrati piu piccoli ho messo in relazione i telescopi col sensore ATIK, in quello piu grande ho messo in relazione il rifrattore corto con il sensore della canon. Guardate che differenza! M1 risulterebbe minuscola nel caso “canon + rifrattore) mentre risulta ben centrata e “presente” nel campo del Newton GSO 250 F/5 con il sensore Atik

In questo modo, si può quindi decidere che telescopio ad esempio acquistare e come inserirlo all’interno di valutaizoni anche relative al campo inquadrato. Analogamente si possono fare valutazioni sull’acquisto di un sensore rispetto alla propria strumentazione. Ad esempio, se la mia idea fosse quella di fotografare piccole nebulose planetarie, utilizzare la canon sul rifrattore star 71 non darebbe risultati apprezzabili. Se questo è un discorso che a rigor di logica è banale, vederlo “a monitor” lo trovo piu efficace. Ho il panorama delle mie ottiche sempre sotto mano.

Stesso discorso vale per la scelta degli oggetti. Nel caso dell’immagine di cui sopra, la risposta “con che telescopio e sensore riprendo M1?” trova una rapida risposta.

LA ROTAZIONE DEL SENSORE

Affrontiamo infine il discorso della rotazione del sensore. Se io volessi riprendere la horse nebula con il mio rifrattore + il sensore Atik, ci starebbe tutta? Vediamo il campo inquadrato rispetto all’oggetto:

Capiamo che potrebbe starci molta “roba”, ma non con il sensore orientato in questa maniera. Dobbiamo dargli una rotazione diversa. Dopo alcune prove ho capito che dovrebbe essere ruotato a 80 gradi o al suo reciproco sui 360° di rotazione

8

E In questo modo ecco l’oggetto come sarebbe perfettamente inquadrato!

9

Quindi basterà ruotare il sensore a 80° per avere l’immagine inquadrata in questa maniera. Ottenere gli 80 gradi è semplice: sostanzialmente, se avete un rifrattore, dovete trovare il grado 0 del sensore (normalmente perpendicolare al terreno nella sua parte lunga) e poi ruotare di 10°. Diversamente bisognerà valutare che tipo di  telescopio avete e in che modo il tipo di ottica utilizzata “ruota” l’immagine. Ma se partite sempre con una posizione di scatto in cui avrete la rotazione prossima a 0°, potreste trovare abbastanza agevolmente la posizione corretta.

Per i possessori di MaximDl, invece, basterà sfruttare le potenzialità enormi di Plate Solving spiegate in questo articolo. e cercarsi la posizione corretta.

Questo è quanto. Alla prossima…e ricordate: se venerdi fa bello, muovetevi prima per decidere il vostro piano di attacco e buone valutazioni!